Analysis of the Compartmentalized Metabolome – A Validation of the Non-Aqueous Fractionation Technique

نویسندگان

  • Sebastian Klie
  • Stephan Krueger
  • Leonard Krall
  • Patrick Giavalisco
  • Ulf-Ingo Flügge
  • Lothar Willmitzer
  • Dirk Steinhauser
چکیده

With the development of high-throughput metabolic technologies, a plethora of primary and secondary compounds have been detected in the plant cell. However, there are still major gaps in our understanding of the plant metabolome. This is especially true with regards to the compartmental localization of these identified metabolites. Non-aqueous fractionation (NAF) is a powerful technique for the determination of subcellular metabolite distributions in eukaryotic cells, and it has become the method of choice to analyze the distribution of a large number of metabolites concurrently. However, the NAF technique produces a continuous gradient of metabolite distributions, not discrete assignments. Resolution of these distributions requires computational analyses based on marker molecules to resolve compartmental localizations. In this article we focus on expanding the computational analysis of data derived from NAF. Along with an experimental workflow, we describe the critical steps in NAF experiments and how computational approaches can aid in assessing the quality and robustness of the derived data. For this, we have developed and provide a new version (v1.2) of the BestFit command line tool for calculation and evaluation of subcellular metabolite distributions. Furthermore, using both simulated and experimental data we show the influence on estimated subcellular distributions by modulating important parameters, such as the number of fractions taken or which marker molecule is selected. Finally, we discuss caveats and benefits of NAF analysis in the context of the compartmentalized metabolome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Topological Map of the Compartmentalized Arabidopsis thaliana Leaf Metabolome

BACKGROUND The extensive subcellular compartmentalization of metabolites and metabolism in eukaryotic cells is widely acknowledged and represents a key factor of metabolic activity and functionality. In striking contrast, the knowledge of actual compartmental distribution of metabolites from experimental studies is surprisingly low. However, a precise knowledge of, possibly all, metabolites and...

متن کامل

A Benchtop Fractionation Procedure for Subcellular Analysis of the Plant Metabolome

Although compartmentation is a key feature of eukaryotic cells, biological research is frequently limited by methods allowing for the comprehensive subcellular resolution of the metabolome. It has been widely accepted that such a resolution would be necessary in order to approximate cellular biochemistry and metabolic regulation, yet technical challenges still limit both the reproducible subcel...

متن کامل

Non Aqueous Titration for the Determination of Azelaic Acid: Introduction and Method Validation

Alpha-hydroxylic acids are widely used in the treatment and control of skin disorders. Azelaic acid is a naturally occuring Alpha-hydroxy acid that can be formed endogenously from long-chain dicardoxylic acids, metabolism of oleic acid or omega oxidation of mono carboxylic acids. It shows bacteriostatic and bactericidal activities against aerobic and anaerobic micro-organisms present on acne-be...

متن کامل

A Dispersive Liquid–Liquid Micro–Extraction Technique for the Pre–concentration and Quantification of Vitamin D3 in Milk and Yogurt Samples Using a Non-Aqueous HPLC Method

In present study, a DLLME-HPLC-UV method was developed and validated for the extraction, pre–concentration, and subsequently quantification of vitamin D3 (Vit D3) in milk and yogurt samples. In order to be able to extract Vit D3 from studied samples efficiently, the DLLME procedure was optimized with respect to the parameters affecting the extraction efficacy, w...

متن کامل

A Dispersive Liquid–Liquid Micro–Extraction Technique for the Pre–concentration and Quantification of Vitamin D3 in Milk and Yogurt Samples Using a Non-Aqueous HPLC Method

In present study, a DLLME-HPLC-UV method was developed and validated for the extraction, pre–concentration, and subsequently quantification of vitamin D3 (Vit D3) in milk and yogurt samples. In order to be able to extract Vit D3 from studied samples efficiently, the DLLME procedure was optimized with respect to the parameters affecting the extraction efficacy, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011